A gotcha with parallel index builds, parallel degree and query plans

Tanel Poder

2007-06-23

Reading the following article about PARALLEL hint by Jonathan Lewis made me remember a somewhat related gotcha with parallelism.

Often when creating (or rebuilding) an index on a large table, doing it with PARALLEL x option makes it go faster – usually in case when your IO subsystem is not the bottleneck and you have enough spare CPU capacity to throw in.

A small example below:

Tanel@Sol01> create table t1 as select * from all_objects;

Table created.

Tanel@Sol01> create index i1 on t1(object_id);

Index created.

Tanel@Sol01> exec dbms_stats.gather_table_stats(user, 'T1', cascade=>true, no_invalidate=>false);

PL/SQL procedure successfully completed.

Ok, for whatever reason I need to rebuild my index, and for speed I do it in parallel:

Tanel@Sol01> alter index i1 rebuild parallel 4;

Index altered.

Tanel@Sol01>
Tanel@Sol01>
Tanel@Sol01> select
  2     sum(object_id)
  3  from
  4     t1
  5  where
  6     object_id > 60000
  7  /

SUM(OBJECT_ID)
--------------
      13233374

Tanel@Sol01>
Tanel@Sol01> @x

PLAN_TABLE_OUTPUT
-----------------------------------------------------------------------------------------------------------------
Plan hash value: 3900446664

--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      |     1 |     5 |     8   (0)| 00:00:01 |
|   1 |  SORT AGGREGATE   |      |     1 |     5 |            |          |
|*  2 |   INDEX RANGE SCAN| I1   |  2923 | 14615 |     8   (0)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("OBJECT_ID">60000)

14 rows selected.

The execution plan shows a nice serial range scan for above query. Let’s run the same query with a different value for object_id:

Tanel@Sol01> select
  2     sum(object_id)
  3  from
  4     t1
  5  where
  6     object_id > 10000
  7  /

SUM(OBJECT_ID)
--------------
    1294174783

Tanel@Sol01>
Tanel@Sol01> @x

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------------------------------------------
Plan hash value: 2596547647

-------------------------------------------------------------------------------------------------------------------
| Id  | Operation                 | Name     | Rows  | Bytes | Cost (%CPU)| Time     |    TQ  |IN-OUT| PQ Distrib |
-------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT          |          |     1 |     5 |    19   (0)| 00:00:02 |        |      |            |
|   1 |  SORT AGGREGATE           |          |     1 |     5 |            |          |        |      |            |
|   2 |   PX COORDINATOR          |          |       |       |            |          |        |      |            |
|   3 |    PX SEND QC (RANDOM)    | :TQ10000 |     1 |     5 |            |          |  Q1,00 | P->S | QC (RAND)  |
|   4 |     SORT AGGREGATE        |          |     1 |     5 |            |          |  Q1,00 | PCWP |            |
|   5 |      PX BLOCK ITERATOR    |          | 42937 |   209K|    19   (0)| 00:00:02 |  Q1,00 | PCWC |            |
|*  6 |       INDEX FAST FULL SCAN| I1       | 42937 |   209K|    19   (0)| 00:00:02 |  Q1,00 | PCWP |            |
-------------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   6 - filter("OBJECT_ID">10000)

18 rows selected.

What? Suddenly my query turned parallel !

I haven’t enabled parallelism for my table! How can Oracle go parallel without my consent?

Tanel@Sol01> select table_name, degree from user_tables  where table_name = 'T1';

TABLE_NAME                     DEGREE
------------------------------ ----------------------------------------
T1                                      1

The answer lies in the result of next query:

Tanel@Sol01> select index_name, degree from user_indexes where table_name = 'T1';

INDEX_NAME                     DEGREE
------------------------------ ----------------------------------------
I1                             4

Parallel index (re)build will persistently set the index parallel degree in data dictionary to the value used during build!

This enables the CBO to be free to consider also parallel query plans and in our second select case a parallel plan seemed to be the best.

Whether this parallel plan actually is the most efficient way to go is a separate question, however this kind of unplanned parallelism may destabilize your system performance, especially as it can kick in only for certain instantiations of your SQL statement. Note that even one parallel-enabled object in your execution plan can parallelize the whole query joining many tables (just as even one table with statistics in a join turns on CBO for the whole cursor).

Combined with bind variable peeking side-effects and way too high parallel_max_servers value (hey it’s just a max value, let’s set it to 500), this can bring your OLTP system to knees at very unexpected times.

So, as my database does not have parallelism planned into it, I will eliminate the troublemaker:

Tanel@Sol01> alter index i1 noparallel;

Index altered.

Tanel@Sol01>
Tanel@Sol01> select
  2     sum(object_id)
  3  from
  4     t1
  5  where
  6     object_id > 10000
  7  /

SUM(OBJECT_ID)
--------------
    1294174783

Tanel@Sol01>
Tanel@Sol01> @x

PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------
Plan hash value: 129980005

------------------------------------------------------------------------------
| Id  | Operation             | Name | Rows  | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------
|   0 | SELECT STATEMENT      |      |     1 |     5 |    19   (0)| 00:00:02 |
|   1 |  SORT AGGREGATE       |      |     1 |     5 |            |          |
|*  2 |   INDEX FAST FULL SCAN| I1   | 42937 |   209K|    19   (0)| 00:00:02 |
------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - filter("OBJECT_ID">10000)

14 rows selected.

So the key point is that unless your databases have planned and managed parallelism used in them, it’s worth to run the following query to identify potential troublemakers and disable their parallelism:

SELECT
	'INDEX' OBJECT_TYPE, OWNER, INDEX_NAME, TRIM(DEGREE)
FROM
	DBA_INDEXES
WHERE
	TRIM(DEGREE) > TO_CHAR(1)
UNION ALL
SELECT
	'TABLE', OWNER, TABLE_NAME, TRIM(DEGREE)
FROM
	DBA_TABLES
WHERE
	TRIM(DEGREE) > TO_CHAR(1)
/

On my test environment it returned the following rows:

OBJEC OWNER                          INDEX_NAME                     TRIM(DEGREE)
----- ------------------------------ ------------------------------ -------------
INDEX SYS                            UTL_RECOMP_SORT_IDX1           DEFAULT
TABLE TANEL                          T                              4

From here we see two addtional things:

On the other hand, if you have planned for parallelism, then you probably want to keep the parallelism for tables and indexes consistent, e.g. enable it for all tables requiring parallelism and their indexes, not just for couple of indexes by accident.

Update:

Thanks to Adrian Billington for reminding me that also NOLOGGING flag will stick in data dictionary should you perform nologging operations on an object. You should review those too after rebuilds and reorgs.


  1. I am finally close to launching the completely rebuilt 2024 versions of my Linux & AOT classes in my Learning Platform! (Updates to SQL Tuning class in H2 2024):
    Advanced Oracle SQL Tuning training. Advanced Oracle Troubleshooting training, Linux Performance & Troubleshooting training. Check them out!
  2. Get randomly timed updates by email or follow Social/RSS