
	

Whitepaper	by	Tanel	Poder		
http://blog.tanelpoder.com	

Are you getting the most out of your Exadata?
Part	1:	Basic	Smart	Scans	-	version	1.02	
By	Tanel	Poder	(tanel@tanelpoder.com)		
	
Welcome	to	reading	my	first	whitepaper	in	the	Exadata	Performance	series.	I	will	spare	you	
from	yet	another	echo	of	the	marketing	material	and	copy	of	the	Exadata	spec-sheets.	
Instead	I	will	explain	a	few	scenarios	here,	where	you	might	not	be	getting	the	most	out	of	
your	Exadata	investment	and	how	to	detect	that	yourself.	We’ll	look	into	Exadata	
performance	in	a	Data	Warehousing	workload	context.		
	
Whenever	I	have	been	involved	in	a	migration	from	“old”	platform	to	Exadata,	the	
applications	usually	run	much	faster	on	the	Exadata	platform	–	as	expected.	This	can	
happen	thanks	to	all	the	fundamental	improvements	of	Exadata	(the	marketing	stuff	you	
constantly	hear	about),	but	some	of	the	extra	performance	may	just	come	from	the	fact	that	
you	migrated	to	Oracle	11.2	from	your	old	database	version.	And	some	of	the	performance	
may	come	from	running	on	way	faster	CPUs	than	your	5-year-old	big	iron	box	had	in	it.	
Yeah,	that’s	a	wild	generalization	here,	but	my	point	is	that	even	if	you	are	happy	with	your	
Exadata	experience	so	far,	you	might	not	actually	be	fully	using	all	the	benefits	that	Exadata	
can	offer!		

Checking Whether Smart Scanning Is Used
Let’s	first	see	how	to	identify	whether	your	queries	are	taking	full	advantage	of	the	Exadata	
“secret	sauce”	–	Smart	Scans.	Here’s	a	simple	execution	plan,	which	has	some	Exadata-
specific	elements	in	it:	

| Id | Operation | Name | Pstart| Pstop |

0	SELECT STATEMENT			
* 1	FILTER			
2	HASH GROUP BY			
* 3	HASH JOIN			
4	PART JOIN FILTER CREATE	:BF0000		
5	PARTITION HASH ALL		1	16
* 6	HASH JOIN			
* 7	TABLE ACCESS STORAGE FULL	ORDERS	1	16
8	TABLE ACCESS STORAGE FULL	ORDER_ITEMS	1	16
9	PARTITION HASH JOIN-FILTER		:BF0000	:BF0000
* 10	TABLE ACCESS STORAGE FULL	CUSTOMERS	:BF0000	:BF0000

 1 - filter("C"."CREDIT_LIMIT"<MAX("OI"."UNIT_PRICE"*"OI"."QUANTITY"))
 3 - access("C"."CUSTOMER_ID"="O"."CUSTOMER_ID")
 6 - access("O"."ORDER_ID"="OI"."ORDER_ID")
 7 - storage(("O"."ORDER_STATUS"=5 AND "O"."ORDER_MODE"='online'))
 filter(("O"."ORDER_STATUS"=5 AND "O"."ORDER_MODE"='online'))
 10 - storage("C"."NLS_TERRITORY"='AMERICA')
 filter("C"."NLS_TERRITORY"='AMERICA')

	
All	the	TABLE	ACCESS	FULL	row	sources	do	have	the	STORAGE	keyword	in	them.	It	is	
important	to	know	that	this	does	not	mean	that	Exadata	smart	scans	are	used.	The	
STORAGE	keyword	in	row	sources	means	that	this	execution	plan	is	using	an	Exadata-
storage	aware	and	smart	scan	capable	row	source,	but	it	doesn’t	tell	us	whether	a	smart	
scan	actually	happened	for	given	execution.	Also,	in	the	bottom	you	see	two	storage()	
predicates	in	addition	to	the	usual	filter()	and	access()	ones.	This	shows	that	if	a	smart	scan	
were	chosen	for	scanning	some	segments	during	given	SQL	execution,	then	Oracle	would	

	

Whitepaper	by	Tanel	Poder		
http://blog.tanelpoder.com	

attempt	to	offload	the	predicate	conditions	into	the	cells.	If	the	smart	scan	was	not	used,	
then	predicate	offloading	did	not	happen	either	(as	the	filter	predicate	offloading	is	part	of	
smart	scan).	
	
Important:	
The	key	thing	to	remember	is	that	Exadata	smart	scan	is	not	only	a	property	of	an	execution	
plan	-	it's	actually	a	runtime	decision	done	separately	for	each	table/index/partition	
segment	accessed	with	a	full	scan.	It	is	not	possible	to	determine	whether	a	smart	scan	
happened	just	by	looking	into	the	execution	plan,	you	should	measure	execution	metrics	
from	V$SQL	or	V$SESSION	to	be	sure.		
	
It	is	also	possible	that	a	smart	scan	is	attempted	against	a	segment,	but	during	the	smart	
scan	execution,	the	cells	have	to	fall	back	to	regular	block	IO	mode	for	some	blocks	and	ship	
the	blocks	back	to	database	for	processing	-	instead	of	extracting	rows	from	them	inside	the	
cell.	For	example,	this	happens	for	blocks	for	which	the	consistent	reads	require	access	to	
undo	data	or	there	are	chained	rows	in	a	block.	There	are	more	reasons	and	we	explain	
these	in	detail	in	the	upcoming	Expert	Oracle	Exadata	book.	
	
This	should	also	explain	why	is	there	a	filter	predicate	(executed	in	the	database	layer)	in	
addition	to	every	storage	predicate	in	the	plan,	because	sometimes	the	filtering	cannot	be	
entirely	offloaded	to	the	storage	cells	and	the	database	layer	has	to	perform	the	final	
filtering.	

Serial Execution Without Smart Scan
Let’s	look	into	an	example	query	now,	executed	in	serial	mode	at	first.	Basically	it’s	
returning	all	customers	who	have	ever	made	orders	where	the	total	order	amount	exceeds	
their	customer-specific	credit	limit.	All	the	tables	are	partitioned	and	their	total	size	is	
around	11GB.	Note	that	this	query	is	written	against	a	regular	normalized	OLTP-style	
schema,	not	a	star-	or	snowflake	schema	which	is	you	are	likely	using	in	your	DW	databases.	
But	for	purpose	of	this	demo	it	should	be	enough.		
	
SELECT
 c.customer_id
 , c.cust_first_name ||' '||c.cust_last_name
 , c.credit_limit
 , MAX(oi.unit_price * oi.quantity) max_order_total
FROM
 soe.orders o
 , soe.order_items oi
 , soe.customers c
WHERE
-- join conditions
 c.customer_id = o.customer_id
AND o.order_id = oi.order_id
-- constant filter conditions
AND c.nls_territory = 'AMERICA'
AND o.order_mode = 'online'
AND o.order_status = 5
GROUP BY
 c.customer_id
 , c.cust_first_name ||' '||c.cust_last_name
 , c.credit_limit
HAVING
 MAX(oi.unit_price * oi.quantity) > c.credit_limit;

	
When	executed	on	an	otherwise	idle	quarter	rack	Exadata	V2	installation,	it	took	151	
seconds	to	run,	which	seems	too	much,	knowing	that	the	smart	scans	on	even	a	quarter	rack	

	

Whitepaper	by	Tanel	Poder		
http://blog.tanelpoder.com	

can	scan	data	on	hard	disks	multiple	gigabytes	per	second	(and	even	faster	from	flash	
cache).	
	
So,	I	will	identify	the	SQL	ID,	child	cursor	number	and	execution	ID	of	this	current	ongoing	
SQL	execution	first:	
	
SQL> SELECT sql_id, sql_child_number, sql_exec_id
 2> FROM v$session WHERE sid=200;

SQL_ID SQL_CHILD_NUMBER SQL_EXEC_ID
------------- ---------------- -----------
9n2fg7abbcfyx 0 16777224

	
Now,	let’s	look	into	V$SQL	first,	using	the	SQL	ID	and	child	cursor	number:	

SQL> SELECT
 2 ROUND(physical_read_bytes/1048576) phyrd_mb
 3 , ROUND(io_cell_offload_eligible_bytes/1048576) elig_mb
 4 , ROUND(io_interconnect_bytes/1048576) ret_mb
 5 , (1-(io_interconnect_bytes/NULLIF(physical_read_bytes,0)))*100 "SAVING%"
 6 FROM
 7 v$sql
 8 WHERE
 9 sql_id = '9n2fg7abbcfyx'
 10 AND child_number = 0;

 PHYRD_MB ELIG_MB RET_MB SAVING%
---------- ---------- ---------- ----------
 10833 0 10833 0

The	physical_read_bytes	metric	(phyrd_mb)	shows	that	Oracle	database	layer	has	issued	
10833	MB	worth	of	IO	calls	for	this	SQL.	And	the	io_interconnect_bytes	(ret_mb)	shows	that	
this	query	has	also	used	10833	MB	worth	of	IO	interconnect	traffic	(between	database	host	
and	storage	cells).	So,	the	smart	scans	were	not	able	to	reduce	the	cell-database	IO	traffic	at	
all.	In	fact,	when	looking	into	io_cell_offload_eligible_bytes		(elig_mb),	it’s	zero.	This	means	
that	the	database	has	not	even	tried	to	do	smart	scan	offloading	for	this	statement.	If	10GB	
worth	of	segments	would	be	read	via	smart	scans,	then	the	“eligible	bytes	for	offload”	would	
also	show	10GB.	So,	this	io_cell_offload_eligible_bytes	metric	is	a	key	for	determining	
whether	any	offloading	has	been	attempted	for	a	query.	Note	that	V$SQL	accumulates	
statistics	over	multiple	executions	of	the	same	query,	so	if	this	cursor	has	already	been	
executed	before	(and	is	still	in	cache)	you	should	not	look	into	the	absolute	values	in	the	
V$SQL	columns,	but	rather	by	how	much	they	increase	(calculate	deltas	from	before-	and	
after-test	values).	
	
Another	option	is	to	look	into	what	the	session(s)	executing	this	SQL	are	doing	and	waiting	
for.	You	can	use	SQL	trace	or	ASH	for	this,	or	any	other	tool,	which	is	capable	of	extracting	
the	wait	information	from	Oracle.	Here’s	a	wait	profile	example	from	the	problem	session,	
taken	with	Oracle	Session	Snapper	(a	free	Oracle	troubleshooting	tool	downloadable	from	
my	blog):		

--
Active% | SQL_ID | EVENT | WAIT_CLASS
--
 49% | 9n2fg7abbcfyx | cell multiblock physical read | User I/O
 40% | 9n2fg7abbcfyx | ON CPU | ON CPU
 10% | 9n2fg7abbcfyx | gc cr multi block request | Cluster

	

	

Whitepaper	by	Tanel	Poder		
http://blog.tanelpoder.com	

Indeed	we	aren’t	seeing	the	cell	smart	table	scan	(or	cell	smart	index	scan)	wait	events,	but	a	
cell	multiblock	physical	read	wait	event	as	the	top	one	–	which	shows	that	half	of	the	query	
time	is	spent	doing	regular	multiblock	IOs	from	storage	to	database.	Note	that	there’s	still	a	
chance	that	smart	scans	are	happening	for	some	tables	involved	in	the	query	(but	they	don’t	
show	up	in	the	top	waits	thanks	to	their	fast,	asynchronous	nature),	but	the	regular	
multiblock	reads	show	up	thanks	to	rest	of	the	tables	not	using	smart	scan.	Luckily	it’s	
possible	to	check	exactly	which	execution	plan	row	sources	do	use	the	smart	scan	and	how	
much	do	they	benefit	from	it.	
	
We	can	get	this	information	from	the	Real	Time	SQL	Monitoring	views,	either	by	manually	
querying	V$SQL_PLAN_MONITOR	or	by	Grid	Control/Database	Control	UI	tools.	I	like	to	
always	know	where	the	data	is	coming	from,	so	let’s	start	from	a	manual	query.	Note	that	
the	sql_id	and	sql_exec_id	values	are	taken	from	my	previous	query	against	V$SESSION	
above:	

SQL> SELECT
 2 plan_line_id id
 3 , LPAD(' ',plan_depth) || plan_operation
 4 ||' '||plan_options||' '
 5 ||plan_object_name operation
 6 , ROUND(physical_read_bytes /1048576) phyrd_mb
 7 , ROUND(io_interconnect_bytes /1048576) ret_mb
 8 , (1-(io_interconnect_bytes/NULLIF(physical_read_bytes,0)))*100 "SAVING%"
 9 FROM
 10 v$sql_plan_monitor
 11 WHERE
 12 sql_id = '9n2fg7abbcfyx'
 13 AND sql_exec_id = 16777224;

 ID OPERATION PHYRD_MB RET_MB SAVING%
--- --- ---------- ---------- --------
 0 SELECT STATEMENT 0 0
 1 FILTER 0 0
 2 HASH GROUP BY 0 0
 3 HASH JOIN 0 0
 4 PART JOIN FILTER CREATE :BF0000 0 0
 5 HASH JOIN 0 0
 6 PART JOIN FILTER CREATE :BF0001 0 0
 7 PARTITION HASH ALL 0 0
 8 TABLE ACCESS STORAGE FULL ORDERS 2038 2038 0
 9 PARTITION HASH JOIN-FILTER 0 0
 10 TABLE ACCESS STORAGE FULL CUSTOMERS 3943 3943 0
 11 PARTITION HASH JOIN-FILTER 0 0
 12 TABLE ACCESS STORAGE FULL ORDER_ITEMS 4834 4834 0

The	V$SQL_PLAN_MONITOR	doesn’t	have	the	io_offload_eligible_bytes	column	showing	how	
many	bytes	worth	of	segments	were	scanned	using	smart	scans,	but	nevertheless	the	
io_interconnect_bytes	column	tells	us	how	many	bytes	of	IO	traffic	between	the	database	
host	and	cells	were	done	for	the	given	access	path.	In	the	above	example,	exactly	the	same	
amount	of	data	was	returned	by	cells	(RET_MB)	as	requested	by	database	(PHYRD_MB),	so	
there	was	no	interconnect	traffic	saving	at	all.	When	these	numbers	exactly	match,	this	is	a	
good	indication	that	no	offloading	was	performed	(as	all	the	IO	requested	by	database	was	
returned	in	untouched	blocks	to	the	database	and	no	data	reduction	due	to	filtering	and	
projection	offloading	was	performed	in	the	cells).	So,	this	is	additional	confirmation	that	
none	of	the	tables	were	scanned	with	smart	scan.	
	
I	caused	the	above	problem	deliberately.	I	just	set	the	undocumented	parameter	
_small_table_threshhold	to	a	big	value	(1000000	blocks)	in	my	testing	session.	This	made	
Oracle	table	scanning	function	think	that	all	the	scanned	partitions	were	“small”	segments,	

	

Whitepaper	by	Tanel	Poder		
http://blog.tanelpoder.com	

which	should	be	scanned	using	regular	buffered	reads	as	opposed	to	direct	path	reads,	
which	are	a	pre-requisite	for	smart	scans.	Note	that	the	above	query	was	executed	in	serial	
mode,	not	parallel.	Starting	from	Oracle	11g,	Oracle	can	decide	to	use	direct	path	reads	(and	
as	a	result	smart	scans)	even	for	serial	sessions.	The	direct	path	read	decision	is	done	
during	runtime,	separately	for	each	table/index/partition	segment	accessed	–	and	it’s	
dependent	on	how	many	blocks	this	segment	has	under	its	HWM	and	what’s	the	buffer	
cache	size	etc.	So,	you	might	encounter	such	an	issue	of	Oracle	deciding	to	not	use	direct	
path	reads	(and	thus	smart	scan)	in	real	life	too	–	and	as	it’s	an	automatic	decision,	it	may	
change	unexpectedly.	

Serial Execution With Smart Scan

Let’s	run	the	same	query	without	my	trick	to	disable	smart	scans,	I’m	using	default	session	
parameters	now.	The	query,	still	executed	in	serial,	tool	26	seconds	(as	opposed	to	151	
seconds	previously).	The	wait	profile	looks	different,	the	cell	smart	table	scan	wait	is	
present	and	there	are	no	regular	block	IO	related	waits.	The	CPU	usage	percentage	is	higher,	
but	remember	that	this	query	completed	over	5	times	faster	than	previously.	Higher	CPU	
usage	with	lower	response	time	is	a	good	thing,	as	high	CPU	usage	means	that	your	query	
spent	less	time	waiting	instead	of	working	and	wasn’t	throttled	by	IO	and	other	issues.		

--
Active% | SQL_ID | EVENT | WAIT_CLASS
--
 73% | 9n2fg7abbcfyx | ON CPU | ON CPU
 28% | 9n2fg7abbcfyx | cell smart table scan | User I/O

For	simple	enough	queries	you	might	actually	see	that	only	a	couple	of	percent	of	response	
time	is	spent	waiting	for	smart	scans	and	all	the	rest	is	CPU	usage.	This	happens	thanks	to	
the	asynchronous	nature	of	smart	scans,	where	cells	work	for	the	database	sessions	
independently	and	may	be	able	to	constantly	have	some	data	ready	for	the	DB	session	to	
consume.	
	
Now,	let’s	look	into	V$SQL	entries	of	that	cursor	(a	new	child	cursor	1	was	parsed	thanks	to	
me	changing	the	_small_table_threshold	parameter	value	back):	

SQL> SELECT
 2 ROUND(physical_read_bytes/1048576) phyrd_mb
 3 , ROUND(io_cell_offload_eligible_bytes/1048576) elig_mb
 4 , ROUND(io_interconnect_bytes/1048576) ret_mb
 5 , (1-(io_interconnect_bytes/NULLIF(physical_read_bytes,0)))*100 "SAVING%"
 6 FROM
 7 v$sql
 8 WHERE
 9 sql_id = '9n2fg7abbcfyx'
 10 AND child_number = 1;

 PHYRD_MB ELIG_MB RET_MB SAVING%
---------- ---------- ---------- ----------
 10815 10815 3328 69.2%

Apparently	all	the	physical	IOs	requested	were	requested	using	the	smart	scanning	method,	
as	ELIG_MB	is	the	same	as	PHYRD_MB.	Apparently	some	filtering	and	projection	was	done	
in	the	cell	as	the	interconnect	traffic	(RET_MB)	of	that	statement	is	about	69.2%	less	than	
the	scanned	segments	sizes	on	disk.	
	
Let’s	drill	down	into	individual	execution	plan	lines,	which	allows	us	to	look	into	the	
efficiency	of	accessing	individual	tables.	In	real	life	DWs	you	are	more	likely	dealing	with	
10..20	table	joins,	not	3-table	joins.	Note	that	the	sql_exec_id	has	increased	as	I’ve	re-
executed	the	SQL	statement:	

	

Whitepaper	by	Tanel	Poder		
http://blog.tanelpoder.com	

SQL> SELECT
 2 plan_line_id id
 3 , LPAD(' ',plan_depth) || plan_operation
 4 ||' '||plan_options||' '
 5 ||plan_object_name operation
 6 , ROUND(physical_read_bytes /1048576) phyrd_mb
 7 , ROUND(io_interconnect_bytes /1048576) ret_mb
 8 , (1-(io_interconnect_bytes/NULLIF(physical_read_bytes,0)))*100 "SAVING%"
 9 FROM
 10 v$sql_plan_monitor
 11 WHERE
 12 sql_id = '9n2fg7abbcfyx'
 13 AND sql_exec_id = 16777225;

 ID OPERATION PHYRD_MB RET_MB SAVING%
--- --- ---------- ---------- -------
 0 SELECT STATEMENT 0 0
 1 FILTER 0 0
 2 HASH GROUP BY 0 0
 3 HASH JOIN 0 0
 4 PART JOIN FILTER CREATE :BF0000 0 0
 5 PARTITION HASH ALL 0 0
 6 HASH JOIN 0 0
 7 TABLE ACCESS STORAGE FULL ORDERS 2038 2 99.9
 8 TABLE ACCESS STORAGE FULL ORDER_ITEMS 4834 3125 35.3
 9 PARTITION HASH JOIN-FILTER 0 0
 10 TABLE ACCESS STORAGE FULL CUSTOMERS 3943 201 94.9

The	above	output	clearly	shows	that	the	ORDERS	and	CUSTOMERS	tables	benefit	from	
smart	scan	the	most.	
	
Note	that	the	execution	plan	join	order	has	changed	too,	this	is	thanks	to	the	automatic	
cursor	re-optimization	using	cardinality	feedback	from	previous	child	cursor’s	execution	
statistics.	

Summary
In	order	to	get	the	most	out	of	your	Exadata	performance	for	your	DW	application,	you’ll	
have	to	use	smart	scans.	Otherwise	you	won’t	be	able	to	take	advantage	of	the	cells	
computing	power	and	its	IO	reduction	features.	Full	segment	scans	(like	full	table/partition	
scans	and	fast	full	index	scans)	are	a	pre-requisite	for	smart	scans.	Additionally,	direct	path	
reads	have	to	be	used	in	order	to	the	smart	scans	to	kick	in.	For	serial	sessions,	the	direct	
path	read	decision	is	done	based	on	the	scanned	segment	size,	buffer	cache	size	and	some	
other	factors.	For	parallel	execution,	direct	path	access	is	always	used	for	full	scans,	unless	
you	use	the	new	parallel_degree_policy	=	AUTO	feature,	in	which	case	the	decision	would	
again	be	dynamic.	
	
In	this	article	we	only	managed	to	touch	the	surface	of	all	the	optimization	and	benefits	that	
Exadata	gives	us.	We	didn’t	even	look	into	parallel	execution	yet,	although	from	smart	
scanning	perspective	it’s	not	too	different	from	serial	execution.	Also,	I	ran	out	of	space	
before	I	got	to	explain	the	bloom	filter	pushdown	to	the	cells,	which	would	allow	to	push	the	
“:BF000x”	filters	that	you	may	see	in	the	execution	plans	with	hash	joins,	all	the	way	to	the	
cells	-	to	reduce	the	amount	of	returned	data	even	more.	Well,	hopefully	in	a	future	article	J		

