Drilling Deep Into Exadata Performance
With ASH, SQL Monitoring and Exadata Snapper

Tanel Poder
Enkitec

http://www.enkitec.com
http://blog.tanelpoder.com

www.enkitec.com

enkitec

OakT:

able.nel .
Intro: About me T‘T B | e orecer
ORACLE | 51T a
* Tanel Poder
* Former Oracle Database Performance geek
* Present Exadata Performance geek ;-)

* My Exadata experience Expert
. Oracle
* | have had the luck to work with all Fxadata

possible Exadata configurations out there e
* ExadataV1... X3
* Multi-rack Exadatas ...

* Even a mixed rack Exadata (V2 <-> X2-2 :) @

Expert Oracle Exadata

* Enkitec Exadata experience book
(with Kerry Osborne and
Randy Johnson of Enkitec)

Apress

* Over 100 implementations!

www.enkitec.com 2

enkitec

About Enkitec

e E.nkitec LP er)l_{ltec

North America

N Plati :
* Enkitec Europe ORACLE Paﬁr:rm

* EMEA Everything

OR ACL€® Exadata

° 90+ staff Planning/PoC
* In US, Europe PARTNER !‘IETWORK Implementation

» Consultants with TITAN AWARD WINNER Consolidation

Oracle experience Migration
of 15+ years on average

Backup/Recovery
. Patching
What makes us unique . Troubleshooting
* 100+ Exadata implementations to date
o Performance
* 100% customer satisfaction rate)
- Exadata-specific services Capacity
 Exadata Quarterly Patching Service Training

* Enkitec Exadata lab

We have 2 Exadatas for thorough
testing and PoCs

www.enkitec.com

enkitec

Agenda

1. Finding non-Exadata friendly SQL
2. A little bit of Smart Scan internals

3. Reading a SQL Monitoring report on Exadata

. ... and where it falls short

4. Using advanced Exadata performance metrics
* Exadata Snapper (ExaSnap)!!!

www.enkitec.com

enkitec

Exadata’s “secret sauce” for different workloads

* “DW / Reporting”
* Long running SQL statements
* Executed less frequently
* Secret Sauce: Smart Scans + Offloading + Storage Indexes
* SQL statements should use full table scans + hash joins

- “OLTP”
* Short SQL statements
* Executed very frequently
* Secret Sauce: Flash Cache
* SQL & performance tuning is the same as usual!

www.enkitec.com

enkitec

Intro

Finding non-Exadata-friendly SQL

(non-smart-scan-friendly SQL...)

www.enkitec.com

enkitec

1) Finding top non-Exadata-friendly SQLs

* Option 1:
* Find SQLs which wait for non-smart scan 10 operations the most
* ASH!

* Option 2:
* Find SQLs doing the most disk reads without Smart Scans

* Highest MB read or highest IOPS
a) ASH!
— SUM(DELTA_READ_IO_REQUESTS)
— SUM(DELTA_READ_IO_BYTES)
b) ..orjoin to VSSQLSTAT (or DBA_HIST _SQLSTAT)
— SUM(PHYSICAL_READ_REQUESTS_DELTA)
— SUM(PHYSICAL_READ_BYTES_DELTA)

www.enkitec.com

enkitec

2) Are these long-running or frequently executed short
gueries?

* Exadata Smart scans are not optimized for ultra-frequent execution
* Smart Scanning 1000s of times per second isn’t good
* That’s why Smart Scans shouldn’t be used for your OLTP-queries

* Here’s an analogy:
1. Want to deliver a single parcel to a destination

e Use a Ferrari
2. Want to deliver 10 000 parcels to a destination

. Use a truck

3. Want to deliver 10 000 000 parcels to a destination
. Use a freight train

* Smart Scan is the Exadata’s freight train

. Brute force scanning with relatively high inertia to get started, not a few
quick (buffered) 1I/0O operations done with surgical precision

www.enkitec.com 8

enkitec

Demo — exafriendly.sql

* Drill down into ASH wait data:

SQL> @exadata/exafriendly.sql gv$active_session_history

SESSION WAIT_CLASS

ON CPU

WAITING User I1I/0
WAITING User I/0
WAITING User I/0
WAITING User I/0
WAITING User I/0
WAITING Application
WAITING User I/0

PLAN_LINE

cell single block physical read
db file parallel read

cell smart table scan

cell multiblock physical read
direct path read temp

enqg: RO - fast object reuse
direct path read

USERNAME EVENT

SECONDS
192356
191838
40577
28593
19424
18398
8690
5812

SECONDS

TABLE ACCESS BY LOCAL INDEX ROWID USER_104 cell single

TABLE ACCESS BY INDEX ROWID
INDEX RANGE SCAN

TABLE ACCESS STORAGE FULL
INDEX RANGE SCAN

TABLE ACCESS STORAGE FULL
UPDATE

TABLE ACCESS BY INDEX ROWID
MERGE

enkitec

USER_779 cell single
USER_104 cell single
USER_49 cell single
USER_779 cell single
USER_783 cell single

USER_104 cell single
USER_420 cell single
USER_962 cell single

www.enkitec.com

physical
physical
physical
physical
physical
physical
physical
physical
physical

P PR RPN

Ul NN 00 O P 00 NN W

Demo — mon_topsql.sql

* TOP Time-consuming SQLs with |0 & execution counts
* That way we’ll separate the Ferraris from Freight Trains!
* The “Ferraris” aren’t Exadata smart scan friendly

DAY PCT OWNER OBJECT_NAME PROCEDURE_NAME sQL_Ib TOTAL_HOURS | TOTAL_SECONDS | EXECUTIONS |SECONDS_PER_EXEC | I0_PCT | CPU_PCT
9/4/11 4.10% 32vkfmvcdgfkp 40.3 145200 0 65.8 19.1
3.20% 5qjq8ckgsu054 31.7 114050 0 98.7 13

3.20% 8b1btaOwk04s9 31.7 114010 1159739 0.1 0 98

3.20% 31.7 113980 2.5 34.1

3.10% cwyylg22pyf60 30.3 109180 0 0 99.5

2.80% 4suwa3nurdd2q 27.6 99440 0 90.4 6.2

2.30% 1bnn9jw75t95c 23.1 83130 0 99.3 0.7

2.10% gsv18p3ykvv34 20.3 73230 0 0.1 99.9
1.80%|APPX_MOD_RMS [MAP_PACKAGE STATE_MAPPINGS |gbmmdspOra23n 17.8 63990 7 9141.43 93.3 6

1.60% SvgtmShfhwilwa 15.5 55890 0 98.8 0.8

1.50% Sxdxcr7pk0Ocn5 14.7 52810 37985 1.39 98.5 1.5

1.40% 5fpy9xtn5tv2g 13.6 49130 0 58.8 41.2

1.20% 3zzex99ufrytl 12.1 43420 52004462 0 86.9 13.1

9/5/11 2.40% 58.6 211110 7 35.6
2.40% fwOtardrfa39x 58.6 210880 28666 7.36 92.8 5.9

2.30% 1xxgkv6nSbgu7 58.5 210660 19295 10.92 92.6 6.5

2.30% a615cdv2xn65v 58.3 210010 24302 8.64 94 5

2.30% fqghdbksfgddbw 58.1 209000 17863 11.7 937 5.2

2.30% 10jbgndnjwuvk ST 206980 30286 6.83 86 12.5

2.00% cwyylg22pyf60 49.6 178530 0 0 9957

1.90% 4suwa3nurdd2q 47.9 172480 0 94.9 2.4

1.60% 3zzcx99ufrytl 40 143960 61655359 0 95.6 4.4

enkitec

www.enkitec.com

10

Other sources for overview information

* ASH reports (based on ASH data which I've used)
* EM 12c ASH analytics

Top SQL with Top Row Sources

Sampled#of %

91atnkya3uq3u||1846793290 6.99||TABLE ACCESS - STORAGE FULL 6.99||cell smart table scan 6.91
a7p9s9nark2ajl| 256013542 3171 6.89||TABLE ACCESS - STORAGE FULL 6.79||CPU + Wait for CPU 6.79
gctaxcyk0dt67(|12150706944 f 1 2.33||SELECT STATEMENT 2.33|[SQL*Net break/reset 2.33
to client
7mh3k1p8htisy|| 720331710 f 1 2.15||TABLE ACCESS - STORAGE FULL 2.01||cell multiblock 1.68
FIRST ROWS physical read
1u0xfr31yrh2u|| 785828209 / 1 1.76/|[LOAD AS SELECT 0.60/|CPU + Wait for CPU 0.47
www.enkitec.com
enkitec 11

Exadata Architecture

* All DB nodes talk to all (configured) cells - ASM striped data

* A cell never talks to another cell !!!

DB Node 1 DB Node 2

|
S
23
=2

Cell 5 Cell 6 Cell 7

Cell 1 Cell 2 Cell 3 Cell 4

. .
e]’)l-{]tec- www.enkitec.com

Smart Scans: Asynchronous, independent prefetching

PARSING IN CURSOR #47233445473208 len=38 dep=0 uid=93 oct=3 11d=93 tim=1303079537221426

select * from t3 where owner like

END OF STMT
PARSE #47233445473208:c=1000,e=8964,p=0,cr=0,cu=0,mis=1,r=0,dep=0,0g=1,p1h=4161002650, ti
:c=0,e=21,p=0,cr=0,cu=0,mis=0,r=0,dep=0,0g=1,p1lh=4161002650,tim=1303

EXEC
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT
WAIT

#47233445473208

#47233445473208:
#47233445473208:
#47233445473208:
#47233445473208:
#47233445473208:
#47176529789912:
#47176529789912:
#47176529789912:
#47176529789912:
#47176529789912:
#47176529789912:

If cell smart table/
index scan waits
show up, then a
smart scan is
attempted

enkitec

nam="'enq:
nham="'enq:
nam="cell
nam="cell
nam="cell
nam="cell
nam="cell
nam="cell

The waits are so short due to the
asynchronous nature of smart
scans. Cellsrvs in each cell process
the blocks independently to fill
their send buffers and the DB just
pulls the results from there

lS%l

nam="'SQL*Net message to client' ela= 4 driver 1d=1413697536 #bytes
nam="'SQL*Net more data to client' ela= 16 driver 1d=1413697536 #by
nam="reliable message' ela= 1337 channel context=11888341784 chann

KO - fast object checkpoint' ela= 143 namelmode=12634685
KO - fast object checkpoint' ela= 130 namelmode=12634685

smart
smart
smart
smart
smart
smart

table
table
table
table
table
table

scan'
scan'
scan'
scan'
scan'
scan'

www.enkitec.com

ela= 25 cellhash#=3176594409 p2=0 p3=0
ela= 882 cellhash#=2133459483 p2=0 p3=
ela= 34 cellhash#=3176594409 p2=0 p3=0
ela= 837 cellhash#=2133459483 p2=0 p3=
ela= 26 cellhash#=2133459483 p2=0 p3=0
ela= 22 cellhash#=379339958 p2=0 p3=0

The object checkpoint-
related wait events reliable
message and enqg: KO - fast
object checkpoint always
precede every direct path
scan (thus smart scan too)

13

Storage cells are “shared nothing”

* And they don’t see what’s happening in the database layer...

A large table

Smart Scan

Database Layer

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7

Cell Layer

., www.enkitec.com

Physical disks - Simple math

Sequential “brute force” scan rate 150 MB/sec per disk
or

200 random IOPS per disk

I’m leaving
. . flash cache

12 disks in a storage cell out for
] simplicity for

14 storage cells in a full rack now

150 * 12 * 14 = 25200 MB/sec physical disk scanning rate

If doing only sequential brute force scanning

However,
Index scans

200 * 12 * 14 * 8kB = 262.5 MB/sec clan reabd :
only a supse
Random physical read rate (index scan!) around 100x slower! of data

www.enkitec.com 15

enkitec

The Motivation for Writing Exadata Snapper

[celladmin@enkcel@l ~]$ cellcli

CellCLI: Release 11.2.2.4.0 - Production on Mon Mar 05 ©08:19:41 CST 2012

Copyright (c) 2007, 2011, Oracle. All rights reserved.
Cell Efficiency Ratio: 699

CellCLI>

‘;

Monitored SQL Execution Details)

Overview

SQLID

Execution Started
Last Refresh Time
Execution ID
User

Fetch Calls

90gw2x39rj2ky (1)

Sun Mar 4, 2012 7:07:04 PM
Sun Mar 4, 2012 7:07:10 PM
16777216

TANEL

16

Time & Wait Statistics

Duration | 6.0

Database Time - 4.2s

PL/SQL & Java 0.0s

wait Activity % | 100

27727

IO Statistics
Buffer Gets

10 Requests
10 Bytes

Cell Offload Efficiency

1570

L 5325

-42.86%

Following just the Cell Efficiency Ratio can be as
misleading as tuning by Buffer Cache Hit Ratio!

enkitec

www.enkitec.com

?

7

16

Data Reduction, |0 Avoidance, Early Filtering

Processing
Stage A

Sorting,
aggregation,

joins etc
Smart Scan returned MB + Extra block reads | Temp IO

Bugs, chained
rows, migrated
rows, read

Smart Scan returned MB consistency

Smart Scan returned MB + Extra block reads

Spinning Disk Read MB Flash Reads

Storage
________ - indexes

“Disk” Read MB Reads avoided

Compressed Data

Uncompressed Data

Data Volume

\@_\. .
eDl—{lteC www.enkitec.com 17

Negative Cell Offload Efficiency ratio?

* Must understand where does this ratio come from
¢ Ratio of which Exact metrics?
* And use those metrics in the future

www.enkitec.com

enkitec

18

Negative Cell Offload Efficiency: Data Load Example

Overview

SQLID bg2dnnvhawjug @

Time & Wait Statistics

IO Statistics

Execution Started Tue Mar 6, 2012 11:11:17 AM Duration 51.0s Buffer Gets | 575«
Last Refresh Time Tue Mar 6, 2012 11:12:08 AM Database Time 50.7s 10 Requests l 13K
Execution ID 16777216
User TANEL PL/SQL & Java 0.0s 10 Bytes 4 4GB
Fetch Calls 0 Wait Activity % _ 100 Cell Offload Efficiency -44.93%
Details Cell Offload Efficiency: -44. 93%
— Wh B?
|[E] Plan statistics |22 Plan | | Activity | [Z] Metrics | Bytes read from disks: 4GB y6G
Bytes returned by Exadata: 6GB
Plan Hash Value 1518022003 between 10 Requests and 10 Bytes

Operation Name Estim...| Cost Timeline(51s) | EX...| Act... Me... Tem... I0 Bytes Cell... CPU Activity ... Wait Activity...
[E] CREATE TABLE STATEMENT T 1 1
] LOAD AS SELECT I) 1 529KB B oGs B 55 e 5
TABLE ACCESS STORAGE FULL SALES 59M 78K e 1 59M — 2GB 5.00 4 14 | 6.25
/\ Cell Offload Efficiency: 9.09%
Bytes read from disks: 2GB
2+2=4GB | Bytes returned by Exadata: 2GB |

__——

The “Bytes returned by Exadata”
metric actually uses the “cell physical
10 interconnect bytes” metric
internally, which includes all traffic, not
just rows returned from smart scan.

enkitec

So, write 10s also influence cell offload
efficiency calculation (data loads, sort/join/
aggregate operation TEMP usage).
Write 10s are double/triple mirrored by
ASM!

www.enkitec.com

19

Interpreting the raw metrics with Exadata Snapper

* 10 Efficiency breakdown
* How much physical 10 did we really do?
* How much reads / how much writes?
* How much disk 10 did we avoid doing thanks to Flash Cache?
* How much disk 10 did we avoid doing thanks to Storage Indexes?
* What was the total interconnect traffic?

* How much data was fully processed in the cell (and not shipped back
in blocks due to fallback or problems in the cell?)

How much data was returned by a Smart Scan (as rows)?

* @exadata/exasnap.sql
* Beta quality

* Meant to complement ASH and SQL Monitoring reports, not replace
them

www.enkitec.com 20

enkitec

ExaSnap example: A CTAS statement

Operation Name Estim...| Cost| Timeline(51s) EX... Act..., Me... Tem... I0 Bytes Cell... CPU Activity ... Wait Activity...
[E] CREATE TABLE STATEMENT EEEEEEE 1 1
[LOAD AS SELECT EEE— 1 1 529KB B 2GB s 86 R 54
TABLE ACCESS STORAGE FULL ~ SALES 59M 7gK Se——— 1 59M 2GB 9.09 gy 14 | 6.25

Cell Offload Efficiency: -44.93%
SQL> @exadata/exasnap % 123 124 Bytes read from disks: 4GB
——— Bytes returned by Exadata: 6GB |------
-- Exadata Snapper v@.5 BETA by Tanel Poder @ Enkitec - The Exadata Experts (

SID CATEGORY METRIC TOEFF_PERCENTAGE MB
1280 DB_IO DB_PHYSIO_MB | AR R R R R R R R | 4435
DB_IO DB_PHYSRD_MB | B R ! 2219
DB_TI0 DB_PHYSWR_MB | AR R AR The real disk writes | 2216
are doubled due to
AVOID_DISK_IO PHYRD_FLASH_RD_MB | ASM double-mirrori | 2
AVOID_DISK_IO PHYRD_STORIDX_SAVED_MB | ouble-mirroring | 0
DISK_TIO SPIN_DISK_IO_MB | B R R BB | 6649
DISK_IO SPIN_DISK_RD_MB | AR | 2217
DISK_TIO SPIN_DISK_WR_MB | AR R R R AR R AR R | 4432
REDUCE_INTERCONNECT PRED_OFFLOAD_MB | B R ! 2216
REDUCE_INTERCONNECT TOTAL_IC_MB | B R R R R R R R BB R R R | 6444
REDUCE_INTERCONNECT ~SMART_SCAN_RET_MB | BB ! 2009
REDUCE_INTERCONNECT NON_SMART_SCAN_MB | AR R AR R A | 4435
CELL_PROC_DEPTH CELL_PROC_DATA_MB | R ! 2232
CELL_PROC_DEPTH CELL_PROC_INDEX_MB | | 0

www.enkitec.com 21

enkitec

ExaSnap example 2: Storage Index Savings

SQL> @exadata/exasnap basic 90 91

The real (spinning) disk reads IO was only
1078 MB thanks to 1138 MB of disk IO

avoided due to storage indexes:

DB_LAYER_IO
DB_LAYER_IO
DB_LAYER_IO

AVOID_DISK_IO
AVOID_DISK_IO

REAL_DISK_IO
REAL_DISK_IO
REAL_DISK_IO

REDUCE_INTERCONNECT
REDUCE_INTERCONNECT
REDUCE_INTERCONNECT
REDUCE_INTERCONNECT

CELL_PROC_DEPTH
CELL_PROC_DEPTH

enkitec

DB_PHYSIO_MB
DB_PHYSRD_MB
DB_PHYSWR_MB

PHYRD_FLASH_RD_MB
PHYRD_STORIDX_SAVED_MB

SPIN_DISK_IO_MB
SPIN_DISK_RD_MB
SPIN_DISK_WR_MB

PRED_OFFLOADABLE_MB
TOTAL_IC_MB
SMART_SCAN_RET_MB
NON_SMART_SCAN_MB

CELL_PROC_DATA_MB
CELL_PROC_INDEX_MB

| BB R R R R R R |
| B R R R R R |
I I

I I
| R AHBRHH R R HRRHHRR R RS I

| AR I
| AR |
I I

| AR R |
I I
I I
I I

| AR I
I |

All 1078 MB worth of blocks got offloaded:
they were opened and processed inside the

cells (data layer)

www.enkitec.com

(2216 - 1138 = 1078)

1079
1078

2216

1078

22

So, why isn’t my query Exadata-friendly?

www.enkitec.com

enkitec

23

Drilling down into a SQL execution

1. SQL Monitoring report
* Execution plan!

* Where is most of the response time spent (retrieval vs. subsequent
processing)

* Are smart scans used for data retrieval?

* 10 MB read from disks vs data returned from the cells

. (also called the offload efficiency ratio but knowing the underlying
numbers is way better)

2. ExaSnapper
* Orread the raw vSsesstat metrics if you dare ;-)

www.enkitec.com 24

enkitec

Warm-up case study

* Testing after migration, a query is slow:

Details e

|[E] Plan statistics | ji; parallel lb Activity]

Maximum CPU

8
7 o o
cell single block physical read
© wait events in a parallel query?
)
&
W 4 Degree of Parallelism
3
9 3
(i
a
2
0 AAA A ‘ ‘ A cell single block physical read
06:22:24PM 06:22:29PM 06:22:34PM 06:22:39PM 06:22:44PM 06:22:49PM 06:22:54PM 06:22:59PM 06:23:04PM B Cpu

www.enkitec.com 25

enkitec

Warm-up case study: check the execution plan

* Parallel execution plan does not force full table scans...

| @ | SELECT STATEMENT

I 1 | PX COORDINATOR

I 2 | PX SEND QC (RANDOM)

* 31 FILTER

I 41 HASH GROUP BY

I 51 PX RECEIVE

o | PX SEND HASH

I 7| NESTED LOOPS

I 8 | NESTED LOOPS

91 NESTED LOOPS

| 10 | BUFFER SORT

|11 | PX RECEIVE

|12 | PX SEND ROUND-ROBIN

[* 13 | TABLE ACCESS BY GLOBAL INDEX ROWID
I* 14 | INDEX RANGE SCAN

| 15 | PARTITION HASH ITERATOR

|* 16 | TABLE ACCESS BY LOCAL INDEX ROWID
|* 17 | INDEX UNIQUE SCAN

| 18 | PARTITION HASH ITERATOR

[* 19 | INDEX RANGE SCAN

| 20 | TABLE ACCESS BY LOCAL INDEX ROWID

:TQ10002

:TQ10001

:TQ10000
ORDERS
ORD_STATUS_IX

CUSTOMERS
CUSTOMERS_PK

ORDER_ITEMS_PK
ORDER_ITEMS

Q1,02
Q1,02
Q1,02
Q1,02
Q1,01
Q1,01
Q1,01
Q1,01
Q1,01
Q1,01

www.enkitec.com

[[

[[
P->S | QC (RAND) |
PCWC | [
PCWP | [
PCWP | [
P->P | HASH [
PCWP |
PCWP | Serial stage
PCWP | in a parallel
PCWC | plan
PCWP i
S->P | RND-ROBIN |

[[

| \
PCWP | Parallel index
:ngz : scans (on
PCWP different
PCWP | partitions)
PCWP | 1

26

Warm-up case study — adjusted execution plan

» After forcing full table scans:

16 |
16 |

:BF00Q1|
:BF0001 |
:BF000Q |

PQ Di Fully parallel

| Id | Operation | Name | Pstartl .
__ execution
I @ | SELECT STATEMENT I | |
I 1 | PX COORDINATOR I | |
[2 | PX SEND QC (RANDOM) | :TQ10003 | |
[* 3 | FILTER I | |
I 4 | HASH GROUP BY | | |
| 51 PX RECEIVE | | |
I 6 | PX SEND HASH | :TQ10002 | |
[* 71 HASH JOIN I | |
[8 | PART JOIN FILTER CREATE | :BFQQ0O | |
I 9 | PX RECEIVE I | |
| 10 | PX SEND BROADCAST | :TQ10001 | |
[* 11 | HASH JOIN | | |
[12 | PART JOIN FILTER CREATE | :BFQ0O1 | |
[13 | PX RECEIVE | | |
[14 | PX SEND BROADCAST | :TQ10000 | |
| 15 | PX BLOCK ITERATOR I | 11
[* 16 | TABLE ACCESS STORAGE FULL| ORDERS | 11
[17 | PX BLOCK ITERATOR | | :BFO0O1 |
[* 18 | TABLE ACCESS STORAGE FULL | CUSTOMERS | :BFQOO1 |
[19 | PX BLOCK ITERATOR | | :BFO0QQ |
[* 20 | TABLE ACCESS STORAGE FULL | ORDER_ITEMS |:BFQ00QQI

:BF0000Q |

18 - storage(:Z>=:Z AND :Z<=:Z AND ("C"."NLS_TERRITORY"="AMERICA' AND
SYS_OP_BLOOM_FILTER(:BF@@0@,"C"."CUSTOMER_ID")))

www.enkitec.com

enkitec

plan
QC (RAND) |
|
|
|
HASH |
|
|
|
BROADCAST |
|
|
|
BROADCAST |
|
|
Full table
(partition)
scans with
bloom filter
offloading
27

Case 2: Response time 24 seconds — where is it spent?

1) Full scan: TABLE ACCESS STORAGE FULL i1 SEGl
ill help!
2) But waiting for a buffered read wait event Wi e

« cell multiblock physical read instead of cell smart table/index scan

Overview =
SQLID cppplkgbic3ax @) Time & Wait Statistics 10 Statistics
Execution Started Mon Mar 5, 2012 5:09:56 AM Duration | 2405
: 10: Buffer Gets | 5+«
Last Refresh Time Mon Mar 5, 2012 5:10:20 AM Database Time _ 3.85
Execution ID 16777216 10 Requests o 2,288
PL/SQL & Java 0.0s
User TANEL 10 Bytes 2GB
Fetch Calls 1 Wait Activity % — 100
Y4
Details) i —
lUser I/0: cell multiblock physical read - 20 samples (879%) J
l Plan Statistics l%@ Plan Ib Activity l Metrics |
Plan Hash Value 1047182207 W ip: Right mouse click on the table allows to toggle between 10 Requests and 10 Bytes
Operation Name Estima... Cost Timeline(24... Exec... Actu... Mem... Temp... I0 Bytes CPU Activit... Wait Activity %
[E} SELECT STATEMENT . 1 1
B SORT AGGREGATE 1 — 1 1
TABLE ACCESS STORAGE FULL SALES S9M 77K e 1 59M —2GB ? 100

] User 1/O: cell multiblock physical read - 20 samples (87%) J
\

www.enkitec.com 28

enkitec

Case 2: The same query runs in 3 seconds with Smart Scan

* So, why is it faster?
* Data retrieval (ACCESS) from storage is faster

Overview =
SQLID 92an9uf38hddv (@ Time & Wait Statistics IO Statistics
Execution Started Mon Mar 5, 2012 9:08:16 AM Duration | >0 Buffer Gets | 25
Last Refresh Time Mon Mar 5, 2012 9:08:19 AM Database Time _ 2.3s 10 Requests . 2,644
Execution ID 16777216
User TANEL PL/SQL &Java 0.0s 10 Byl e — 2GB
Fetch Calls 1 Wait Activity % _ 100 Cell Offload Efficiency 71%
Details : =
[User 1/0: cell smart table scan - 2 samples {100%) J
l Plan Statistics IAEE? Plan Ib Activity l Meu-k:J
Plan Hash Value 1047182207 1 Right mouse click on the table allows to toggle between 10 Requests and 10 Bytes
Operation Name Estima...| Cost Timeline(3s) Exe... Actu... Mem... Temp... I0 Bytes Cell ... CPU Activity % Wait Activity %
[SELECT STATEMENT — 1 1
B SORT AGGREGATE 1 — 1 1
TABLE ACCESS STOR... = SALES S9M 77k e— 1 59M — 2GB 71 i 100 Y 100

/

/ | 3

Cell Offload Efficiency: 71% .j User 1/0: cell smart table scan - 2 samples {100%) J
Bytes read from disks: 2GB

Bytes returned by Exadata: 648MB

www.enkitec.com 29

enkitec

Case 2: Now let’s do something with the data...

* Same query, with an extra GROUP BY:
* Takes 3.8 minutes! (228 seconds)
* Why? Let’s see what’s taking the extra time:

Overview =

SQLID
Execution Started

gh3p05ka0rjs (@
Sun Mar 4, 2012 7:10:22 PM

Time & Wait Statistics IO Statistics

Buffer Gets

Last Refresh Time

puration | 5™

Sun Mar 4, 2012 7:14:12 PM

I 254

Database Time | < O™ 10 Requests | I 625K
Execution ID 16777216
User TANEL PL/SQL & Java 0.0s 10 Bytes # 7GB
Fetch Calls 16 wait Activity % || 100 Cell Offload Efficiency -16.28%
Details =
|[E] Ptan statistics | 52 Plan | |~ Activity |[Z] Metrics |
Plan Hash Value 513656289 & T1p: Right mouse click on the table allows to toggle between 10 Requests and 10 Bytes
Operation Name Estima... Cost Timeline(... | Exec... Actua... Mem... Temp... I0 Bytes Cell ... CPU Activl... ' Wait Activity %
[E] SELECT STATEMENT _—— 1 7,059
[SORT ORDER BY 7,059 2,034k —_— 1 7,059 | 1mB
[E HASH GROUP BY 7,059 2,034k S— 1 7,059 J 5GB . 99 _ 99
TABLE ACCES... SALES 59M 78K — 1 59M — 2GB 56| 1.3 .68

|]
J User 1/O: cell smart table scan - 1 samples {.68%)

[.

lUser I/O: direct path read temp - 125 samples (84‘5’:)'J

www.enkitec.com

30

enkitec

Checkpoint

* Smart Scans make the data retrieval from storage faster

* Any other problems require the usual SQL & DB optimization

www.enkitec.com 31

enkitec

Smart Scans do not make any of these things faster (by design):

* Index unique/range/skip scans * :rfaftrir;ﬂ?fsit:;fﬁ
* Sorti nNg segment scan anyway

* Aggregation (GROUP BY)
* Analytic Functions

* Filters that can’t be pushed down to table level:
* WHERE tl.col +t2.col =1

* Any function calls in projection (select list)
* PL/SQL function calls in projection (or WHERE clause)

* Nested loop joins, sort-merge joins and FILTER lookups
* Hash joins are special though

* So, you’ll have to see where is your bottleneck!
* SQL Monitoring report is a good start

This is not a full
list of limitations.

www.enkitec.com 32

enkitec

A query bottlenecked by data processing, not retrieval

* A SQL performing data load and spills to TEMP

Overview

SQLID

Execution Started
Last Refresh Time
Execution ID

7isk74a56hm2x (@

Tue Mar 6, 2012 10:57:26 AM
Tue Mar 6, 2012 11:07:58 AM
16777217

TANEL

Fetch Calls 0

User

Time & Wait Statistics

puration | 10-5™
Database Time |G 10-5m

PL/SQL & Java 0.0s

wait Activity % | 100

10 Statistics

Buffer Gets | 1 352K

10 Requests Jf B6K

e IR 26GB

-14.94%

10 Bytes
Cell Offload Efficiency

Details

|[E] Pran statistics |5z Plan |} Activity | [Z] Metrics |
Plan Hash Value 147847724

Operation Name
[CREATE TABLE STATEMENT
[l LOAD AS SELECT
[E HASH GROUP BY
= HASH JOIN
[HASH JOIN
TABLE ACCESS STORAG... ORDERS
TABLE ACCESS STORAG... CUSTOMERS
TABLE ACCESS STORAGE ... ORDER_ITEMS

135M

Estim... Cost Timeline(63...
—
—
2,45 —

727| —

135M
45M
45M
40M
135M

325 —
96K &

1051 4

134 =

EX...

@ T1P: Right mouse dlick on the table allows to toagle between 10 Requests and 10 Bytes

Act...
1
1 529KB

26M B16ME

135M 648ME

45M 415ME

45M

40M

135M

| enkitec

www.enkitec.com

Me... Tem... I0 Bytes

1 Cell Offload Efficiency: 38%

Cell... CPU Acti

ctivity...

J 585MB

2GB i 4GB
5GB sl 5GB
2GB i 3GB

s 3GB 74| .67
s 3GB 59Y.34
— 4GB 38 | \01

" Bytes read from disks: 4GB 4
| Bytes returned by Exadata: 2GB |

33

Case 3: Case insensitive search

The plan hash value does not change as it doesn’t
take the predicate differences into account!

SELECT SUM(credit_limit) FROM soe.customers
WHERE cust_first_name LIKE 'j%'

Plan hash value: 296924608

FAST ~ 2 seconds

@ | SELECT STATEMENT I I
1 | SORT AGGREGATE I I
2 | I

2 - storage("CUST_FIRST_NAME" LIKE '3j%')
filter("CUST_FIRST_NAME" LIKE 'j%')

Where's the

ALTER SESSION SET nls_comp
ALTER SESSION SET nls_sort

LINGUISTIC;
BINARY_CI;

SELECT SUM(credit_limit) FROM soe.customers
WHERE cust_first_name LIKE 'j%'

Plan hash value: 296924608

SLOW ~14 seconds

| Id | Operation | Name I

@ | SELECT STATEMENT I I
| 1 | SORT AGGREGATE I I
2 |

2 - filter(NLSSORT
("OWNER", 'nls_sort=""BINARY_CI''")
>HEXTORAW(' 7300°))

storage predicate?

enkitec

www.enkitec.com 34

Overview

Time & Wait Statistics I0 Statistics
Ex : puration | > 05 ufter Gets | 57
.. FAST—2seconds [.
’ Database Time | 1 45 10 Requests | 3,025
User TANEL PL/SQL & Java 0.0s 10 By e e ————— 3G B
Fetch Calls 1 wait Activity % | 100 Cell Offload Efficiency 99%
Details - —
Cell Offload Efficiency: 99%
Plan Statistics | & Plan | | Activity | Bytes read from disks: 3GB
Bytes returned by Exadata: 34MB
Plan Hash Value 2965924608 1 the table allows to toggle between 10 Requests and 10 Bytes
‘Operatlon ’Name ’ Esllm...’ Cost’Tlmellne(Zs) } Ex...’Actua...i Mc...' Tam.\lo Bytes ’ceu...]cr»u Activity ...’w;lt Activity... '
[E] SELECT STATEMENT — | 4 1
Bl SORT AGGREGATE 1 ! 1
" TABLE ACCESS STORAGE FULL ~ CUSTOMERS 2,992K 105| ~ |eesm—— 4y 835K 3GB 99 B 100
Overview =
Time & Wait Statistics IO Statistics
Ex [Duraton I Bufter Gets | 357}
... SLOW —14 seconds [“
: Database Time || 14.0s 10 Requests | 3,694
User TANEL FUSQLE I (.0s 10 Bytes | -5
Fetch Calls 1 Wait Activity % Cell Offload Efficiency 78%
Details

Cell Offload Efficiency: 78% (cpu — | (100;_
. or wait for - 14 samples

|[E] Pian statistics |‘E£‘ Plan I b Activity l Metrics | Bytes read from disks: 3GB l Sl | SIS BRTpeE) I
Bytes returned by Exadata: 678MB

Plan Hash Value 296524608 able allows to toggle bgtween 10 Requests and 10 Bytes
Operation ‘Name ‘ Estlm...\Cost"rlmellne(lnts) I Ex...\Actua...\ Me...lTenX\lo Bytes \CQII...\CPl*\ctIvIty... \Walt Activity...
Bl SELECT STATEMENT I 1
Bl SORT AGGREGATE 1 — 1
TABLE ACCESS STORAGE FULL CUSTOMERS 100K 106| W™ 1 2,835K — 3GB 78 100
N——
O

Thank you — and oh, wait!

 Advanced Exadata Performance seminar!
* By Tanel Poder

Systematic Exadata Performance Troubleshooting and Optimization

2-day seminar:
* Dallas, TX —2-3 May 2013
* Online —13-16 May 2013

http://blog.tanelpoder.com/seminar/

We'll go very deep! ©

* Enkitec Extreme Exadata Expo (E4)

* August 5-6 2013 - lots of great speakers! -> August 56, 2013
* http://enkitec.com/e4 Fomsa?;‘::;,ﬂggs& N

www.enkitec.com 36

enkitec

