OracleWorld 2003
EOUG User2User day

Freelists vs ASSM in Oracle9i

Tanel Poder
independent technology consultant
integrid.info



Agenda

e High concurrency environment issues

e Oracle storage & free space management
e Freelist Segment Management internals

e Automatic Segment Space Management

internals W A
e FLM vs ASSM Comparision :

e Converting to ASSM
e Conclusion

e Questions 4{(,
O &4




High Concurrency Environments

e Main performance problems
| [ e Serialization vs Corruption
| ° Locking & Latching

| | e Freelists
e Treelists

| e Hashing

e Load balancing

' J e Different methods
solve different issues




Oracle Data Storage

e Cache Layer (KC)
— Organizes data into Oracle datablocks
— Manages buffer cache, concurrency control
— Does redo logging ‘ ‘

e Transaction Layer (KT)
— Generates undo & rollback ‘
— Read consistency and ITL ‘Transaction Iayer‘
— Does extent allocation ‘

- Manages segment space
— PCTFREE, Freelist & ASSM ‘ ‘

Data layer ‘

Cache layer ‘




Freelist Managed Segment
CREATE TABLE T1 (coll datatype) ;

Chunk of free space
allocated to extent

e Header tracks
allocated extents

e Data blocks
unformatted

e HWM 1st datablock



Freelist Extent Management

First unformatted block



FLM: First insert into segment
INSERT INTO T1 VALUES ('x’) ;

e HWM is advanced

_bump_highwater_mark_count
e Block is put on freelist

e Change in segment
header block

e Only used blocks are
formatted



Freelist Usage

e Freelist is a data structure for keeping
track of blocks candidates for inserts

e Is a Last-in First-out type linked list
— No space overhead

e Gets new free blocks by bumping up HWM
— HWM can be lower than formatted blocks until
committed in case of direct load insert
e When an insert would cause a block to be
Yy filled over PCTFREE and block is already
® over PCTUSED, the block is unlinked



Three Types of Freelists

Segment Freelist or Master Freelist (MFL)
— The default, also called common pool

Process Freelist (PFL)
— Is created with FREELISTS clause

Transaction Freelist (TFL)

— Used implicitly when DML reduces block space
utilization under PCTUSED

Every freelist Group uses one extra data

block after segment header

— Consists of MFL, PFLs and TFLs



Master Free List (MFL)

e Created with every segment
e Common pool for free blocks for everyone

o All freelists reside in segment header or in
special blocks in case of FREELIST GROUPS

e One MFL per freelist group + one remains
in segment header (mostly unused)

11001101
HDR
DR/ | MFL | MFL | iS55

00001101 10111101 | 11011010

Freelist Freelist
Group 1 Group 2

HWM



Process Free List (PFL)

e Created with FREELISTS clause

e Free block pool serving group of processes
— Spreads concurrent insert operations using PID

e Max number determined by block size

- 99 for 8k block (internally one more is stored for
MFL)

MFL 11001101
PFL1 PFL2 10101111
PFL3 PFL4 11101101 | 11001101 01010101
HWM 10111101 | 00001101 | 00001101 10111101 | 11011010

a

HWM



Transaction Free List (TFL)

e Is only used when a delete or update
operation reduces block space utilization
under PCTUSED

e Freelist is only accessible to transaction
which caused the transition
o After commit, the block remains in TFL

— Is not used for any inserts since TFL is tied to
specific transaction

— Until all other freelists in current freelist group
are empty - the blocks are moved to MFL or PFL



Freelist Groups

e To reduce contention on segment header

e Especially useful in OPS and RAC, when
sharing one buffer would result in excessive
pinging or GC traffic

41 =3 =D

MFL MFL MFL MFL 11001101
HDR/ PFL1 PFL2 | PFL1 PFL2 | PFL1 PFL2 | PFL1 PFL2 10101111
HWM PFL3 PFL4 | PFL3 PFL4 | PFL3 PFL4 | PFL3 PFL4 11101101
TFL1 TFL2 | TFL1 TFL2 | TFL1 TFL2 §| TFL1 TFL2 | 10111101 | 00001101

Freelist Freelist Freelist Freelist

Group 1 Group 2 Group 3 Group4




Space
utilization

Time

Tanel Poder Eoug User2User day 14/43



Space

utilization Direct load or
4 array insert
i PCTFREE
| PCTUSED
>
Case 1 Case 2
15/43

Tanel Poder Eoug User2User day



Freelist search stages

1) Uncommitted TFL (for current transaction)
2) Search PFL & Use if found

3) Search MFL & Move to PFL if found

4) Search Committed TFL & Move to MFL

5) Search Common pool (MFL in seg. header)
6) Bump HWM & Move to PFL

/) Allocate extent

q,’ 2
8) Extend datafile @
9) E [
) Error ?@%




Freelist Search parameters

e Every freelist block traversed has to be
read in order to get address of next block

o walk _insert_treshold (default 5)

— Freelist blocks to scan before turning to higher
level list or bump HWM (if walking on TFL, PFL
and MFL are searched next)

e release_insert_threshold (default 5)

- How many unsuitable blocks to unlink from
freelist before bump HWM



Automatic Segment Space Mgmt.

e ASSM free space structure is somewhat
similar to a B-tree index structure

e Tree traversing is used for getting to block
utilization information

e ASSM tree is only 3 levels high
— Root, branch and leaf nodes

e Every datablocks “freeness” is represented
using few bits in leaf nodes

e Free space searching is faster but space
overhead is greater



S
ASSM Segment

e BMB=Bitmap Block
e L3 = Root Block
e |2 = Branch Block
e L1 = Leaf BMB

e L3 can reside in
segment header

e L1 BMB is always
first in extent |




ASSM Segment Header
CREATE TABLE T1 (coll datatype) ;

e Header tracks
allocated extents

e Data blocks
unformatted

e |2 Hint specifies L2
BMB to search



ASSM: First insert into segment
INSERT INTO T1 VALUES ('X’) ;

¢ HHWM is advanced

e Up to 16 blocks are
formatted at once

e Change in segment
header block

e Most activity is spread
to L1 and L2 blocks



Level 1 BMB

Level 1 BMBs indicate the “freeness” of
blocks in DBA range using bitset vector

DBA range represents contiguous set of
blocks within an extent

From 16-1024 DBA ranges per L1 BMB

With smaller segments the relative amount
of L1 BMBs is bigger to maintain
concurrency benefits (one L1 for 16 blocks)

L1 BMB is the smallest unit of space which
has affinity for an instance



Level 2 BMB

e Contains search hint for first L1 BMB

e Count L1 BMBs with free status helps to
skip L2 blocks in space search

e L1 DBA Array:
— L1 Data Block Address

— Instance it is mapped to (can be dynamically changed)

- Maximum freeness in any block
Statuses from 1-6, from unformatted to full

L1 L1 L2 HDR +
BMB BMB BMB |L3 BMB

Big extent size




Level 3 BMB

e Reside in segment header
e Organized as linked list
e Contain pointers to L2 BMBs

e In case of insufficient space in header,
separate L3 BMBs are created

— Original L2 pointers remain in segment header

L1 L2 L3 HDR +

Big tablespace size




ASSM Block Formatting

SQL> create tablespace ts datafile 'ts.dbf'
extent management local uniform size 64k
segment space management auto;

SQL> create table t (a number) tablespace ts;

SQL> select file id, block id, blocks from
lT!;

dba extents where segment name

FILE ID BLOCK 1ID BLOCKS

size 1m

[ [ [oor

101
010

1101

1101
1010

1010

1101
1010

1101
1010

SQL> insert into t values (1),

SQL> alter system dump datafile 9

1101
1010

block min 9 block max 17;

1101/1101{1101/1101|1101|1101|1101{1101
1010/1010/1010/1010/1010(1010(1010{1010
1101/1101{1101/1101|1101/1101|1101|1101
1010/1010/1010/1010/1010(1010/1010(1010
1101/1101{1101/1101|1101|1101|1101{1101
1010/1010/1010/1010/1010{1010(1010{1010




frmt: 0x02 chkval: 0x0000 type: 0x20=FIRST LEVEL BITMAP BLOCK
Dump of First Level Bitmap Block

nbits : 4 nranges: 1 parent dba: 0x0240000a poffset: O
unformatted: 0 total: 8 first useful block: 3
owning instance : 1

instance ownership changed at 10/10/2003 20:43:55
Last successful Search 10/10/2003 20:43:55
Freeness Status: nfl O nf2 O nf3 0 nfd 5

First free datablock : 3
Bitmap block lock opcode 0

Locker xid: : 0x0000.000.00000000
Highwater:: 0x02400011 ext#: O 8
DBA Ranges
0x02400009 Length: 8 Offset: O
0:Metadata 1:Metadata 2:Metadata 3:75-100% free

4:75-100% free 5:75-100% free ©6:75-100% free 7:75-100% free



L2 Bitmap Block

insert into t select 1 from sys.obj$ where rownum <= 3400;
3400 rows created.

frmt: 0x02 chkval: 0x0000 type: 0x21=SECOND LEVEL BITMAP BLOCK
Dump of Second Level Bitmap Block
number: 2 nfree: 1 ffree: 1 pdba: 0x0240000b
opcode: 0
x1id:
L1 Ranges
0x02400009 Free: 1 Inst: 1
0x02400019 Free: 5 Inst: 1

Maximum freeness




L3 Bitmap Block

frmt: 0x02 chkval: 0x0000 type: 0x22=THIRD LEVEL BITMAP BLOCK
Dump of Third Level Bitmap Block

number: 107 , next : 0x00000000
L2 Ranges :
0x07112fle
0x071154c6 0x07117a06e 0x0711a016 0x0711c5be
0x0711lebb66 0x0712110e 0x071236b6 0x07125cbhe

e number shows number of L2 entries in
current L3 block

e next references next L3 block in list, last
block if zero

e is referenecd by First Level 3 BMB in
segment header



Freelist vs ASSM Datablock

FREELIST

ASSM

fnx - next block in freelist

bdba - L1 BMB address

fsl - free space lock

brn - DBA range number
opcode

none

inC - incarnation of block
(if HWM is pulled back)

Block header dump: 0x0240000e
Object id on Block? Y

seg/obj: 0x18a9 «csc: 0x00.126b4 itc: 2 flg: E typ: 1 - DATA
brn: 0 bdba: 0x2400009 ver: 0x01
inc: 0 exflg: O
Itl Xid Uba Flag Lck Scn/Fsc
0x01 0x0000.000.00000000 0x00000000.0000.00 -—-- 0 fsc 0x0000.00000000

0x02 0x0000.000.00000000

0x00000000.0000.00

—-——— 0 fsc 0x0000.00000000




LHWM vs HHWM

e All blocks are
formatted
below LHWM

e All blocks are
unformatted
above HHWM

e Some blocks
are formatted
in between

e Unformatted
blocks issue

LHWM

HHWM



Block State Transition

e Block space usage must drop to another

freeness state (FS) below PCTFREE in order

to get free

FS1

FS2

FS3

FS4

Block full

PCT
FREE
70%

Block full

PCT
FREE
70%

Block free




Searching for Space

1) Use L2 hint in seg. header to begin search
— if not cached DBA
- lock L2 BMB in shared mode

2) Find most free L1 BMB in L2 block

— requests hashed by instance_number, PID

— if no free enough L1 BMB, repeat with next L2
3) Build L1 array with enough free space

- max 10 BMBs with correct instance affinity

— if not enough space in L1, get another L2

— L1 BMBs can be “stealed” from other instances

4) Extend the segment and release L2 lock



RAC: Stealing Blocks

1) If instance owning L1 BMB is dead, then
steal the BMB

2) If instance is live, do a consistent read of
the L1 BMB block

— If sufficient time has passed since L1 BMB
allocation or last “steal”, steal the BMB

— Controlled by _inst_locking _period,
_last_allocation_period parameters

— If BMB can’t be stolen, skip to next
3) Bump up HWM




Searching for Space 2

e There is a Grid in Oracle9i as well!

e ...but only meaning that a 2-dimensional
array is made for searching free datablocks

1) Get L1 shared W
- hashed by PID

2) Scan array in steps
- find 5 candiate blocks
— skipping n elements in grid
3) Format unformatted blks
- reget BMB in EXCL mode

0

—>

16

—>

32

—>

48 7

1

—>

17

—>

33

49

2

18

34

50

16 elements o

14

30

46

62

15

31

47

63

n elements



Allocating Space in Datablocks

e Try to acquire a candidate block in NOWAIT
mode

— If a block is already pinned, skip it
— Try NOWAIT on 5 blocks

— if it fails, release L1 BMB lock and try to pin
datablock normally with WAIT

e Unformatted blocks encountered during
search are formatted and used
— Reget L1 BMB in exclusive mode (FB enqueue)

e Setting HHWM and LHWM



PCTFREE Recalculation

e There is no automatic PCTFREE
recalculation in case of ALTER TABLE in
ASSM

e L1 “freeness” values are updated on
subsequent DML access

e Manual segment level recalculation using
dbms_repair.segment_fix_status
— Recalculates statistics if with default parameters

— Can change specific block freeness values
manually



e \ery

SQL> a
nologg

Converting to ASSM
simple:

lter table t move tablespace users
ing;

Table altered.

e COMPATIBLE parameter at least 9.0.1
e For ASSM LOB segments -> 9.2.0

e Possi
e Chec

le segment growth
K for CLASS# 8, 9, 10 blocks from

V$BE

or X$BH



Freelist Pros & Cons

Pros:

e Virtually no space

overhead

e Mature
functionality

55555

EEEEEEE

Cons:

e Contention on
header blocks

e Default settings
unreasonably low

e Premature unlink

e Large deletes -
non-distributed list

e Unnecessary HWM
bumping



ASSM Pros & Cons

Pros:

Reducing
contention on
freelist buffers &
segment header

Great for RAC

Good for varying
witdth rows

Easy to set up

Internal
maintenance

Cons:

e Space usage

e Slower for FTS

e Fresh functionality

e Automatic - not
tunable s

111111111111111111111111111111111111111111

! 1010010101101 = 10100101011101




Freelists vs ASSM in Performance

e Contradicting results from users

e Everything depends on data usage patterns
and workload

e Just creating and scanning a table doesn’t
give correct estimate of performance
(de)improvements

— Segment size is larger initially, but afterwards?
e In RAC it is not enough just to run

concurrent insert on two instances

— Adding and removing nodes, different workloads



Conclusion

e Indexes still have contention problem!
e If can afford being lazy, go with automatic
e If you want control, go with manual




Freelists vs ASSM in Oracle9i

Questions?



Freelists vs ASSM in Oracle9i

Tanel Poder

Thank you!

http://www.tanelpoder.com



